Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[(Methylcarbamothioyl)disulfanyl]methyl N -methylcarbamodithioate

Hizbullah Khan, ${ }^{\text {a* }}$ Muhammad Aziz, ${ }^{\text {b }}$ Christine Neuhausen, ${ }^{\text {c }}$ Ghulam Murtaza ${ }^{\text {a }}$ and Farkhanda Shaheen ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan,
${ }^{\mathbf{b}}$ Department of Chemistry, University of Science and Technology, Mirpur AJK, Pakistan, and ${ }^{\text {c }}$ Laboratoire de Cristallographie, Ecole Polytechnique Fédérale de Lausanne, Switzerland
Correspondence e-mail: hizbmarwat@yahoo.com

Received 19 August 2010; accepted 25 September 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$; R factor $=0.040 ; w R$ factor $=0.103$; data-to-parameter ratio $=18.7$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{5}$, was unintentionally obtained as the product of an attempted synthesis of a methylcarbamodithioic acid using methylamine and carbon disulfide. In the molecule, two dithiocarbamate groups are bridged by a $-\mathrm{CH}_{2} \mathrm{~S}-$ unit. The $\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ torsion angle is $-90.13(11)^{\circ}$. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions between neighbouring molecules. An intramolecular N $\mathrm{H} \cdots \mathrm{S}$ hydrogen bond also occurs.

Related literature

For dithiocarbamate ligands, see: Cox et al. (1999); Liu \& Bao (2007); Nair et al. (2002).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{5} \quad M_{r}=258.45$
Triclinic, $P \overline{1}$
$a=7.188(1) \AA$
$b=7.884(2) \AA$
$c=10.219(2) \AA$
$\alpha=101.23(3)^{\circ}$
$\beta=96.85(3)^{\circ}$
$\gamma=102.74(3)^{\circ}$

Data collection

Stoe IPDS diffractometer
4080 measured reflections 2077 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$	111 parameters
$w R\left(F^{2}\right)=0.103$	H-atom parameters constrained
$S=1.15$	$\Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3}$
2077 reflections	$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 3$	0.86	2.50	$3.073(2)$	125
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 3^{\mathrm{i}}$	0.86	3.02	$3.595(2)$	127
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {ii }}$	0.86	2.67	$3.515(2)$	168

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x, y, z+1$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X RED32 (Stoe \& Cie, 2002); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Higher Education Commission of Pakistan (HEC) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2358).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cox, M. J. \& Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 486-491.
Liu, Y. Y. \& Bao, W. L. (2007). Tetrahedron Lett. 48, 4785-4788.
Nair, P. S., Radhakrishan, T., Revaprasadu, N., Kolawole, G. A. \& O’ Brien, P. (2002). J. Mater. Chem. 12, 2722-2725.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2010). E66, o2671 [doi:10.1107/S160053681003833X]

[(Methylcarbamothioyl)disulfanyl]methyl N-methylcarbamodithioate

H. Khan, M. Aziz, C. Neuhausen, G. Murtaza and F. Shaheen

Comment

Sulfur-containing organic compounds like dithiocarbamates and xanthates have been used as exceleant metal complexing agents. They have applications as fungicides, pesticides, chelating agents for removal of heavy metal ions from toxic waste, precursors for metal-organic chemical vapour deposition (MOCVD) and synthesis of semi-conductor nanoparticles (Cox \& Tiekink, et al., 1999; Nair et al., 2002.) Dithiocarbamates have also been used as protection groups in peptide synthesis, as linkers in solid phase organic synthesis and recently in the synthesis of ionic ligands (Liu et al., 2007.) In the title compound (Fig. 1), the disulfide portion is substatially twisted, with $\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ torsion angle of $-90.13(11)^{\circ}$. The molecular packing also features intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions (Table 1).

Experimental

Distilled methylamine ($3.00 \mathrm{~g}, 96.8 \mathrm{mmol}$) was added in purified methanol (30 ml) in a two neck flask (250 ml) and stirred for ten minutes at 273 K . Carbon disulfide $7.4 \mathrm{ml}(117 \mathrm{mmol})$ was added drop by drop into the two neck flask containing methylamine and a colorless precipitate was formed at once. The stirring was continued for three hours to complete the reaction. The solvent was removed by vacuum distillation. The solid product was washed several times with methanol. The colorless product was purified by recrystallization from 1,1-dichloromethane/pet ether (8:2) V/V), to give fine crystals of the title compound with an overall yield of 85%.

Refinement

All hydrogen atoms were initially located in a difference Fourier map. H atoms on C and N were refined with a riding model, $\mathrm{C}-\mathrm{H}=0.96 \AA$ with $\mathrm{U}_{\mathrm{iso}(\mathrm{H})}=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methyl groups, $\mathrm{C}-\mathrm{H}=0.97 \AA$ with $\mathrm{U}_{\mathrm{iso}(\mathrm{H})}=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methylene groups, and $\mathrm{N}-\mathrm{H}=0.86 \AA$ with $\mathrm{U}_{\mathrm{iso}(\mathrm{H})}=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure with atom labels and 50% probability displacement ellipsoids for non-H atoms.

[(Methylcarbamothioyl)disulfanyl]methyl N-methylcarbamodithioate

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{5}$

$$
V=546.0(2) \AA^{3}
$$

supplementary materials

$M_{r}=258.45$
Triclinic, $P \mathrm{I}$
$a=7.188$ (1) \AA
$b=7.884(2) \AA$
$c=10.219(2) \AA$
$\alpha=101.23(3)^{\circ}$
$\beta=96.85(3)^{\circ}$
$\gamma=102.74(3)^{\circ}$

Data collection

Stoe IPDS
diffractometer
Radiation source: fine-focus sealed tube graphite
ω scans
4080 measured reflections
2077 independent reflections
$Z=2$
$F(000)=268$
$D_{\mathrm{x}}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\mu=1.01 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, yellow
$0.30 \times 0.11 \times 0.10 \mathrm{~mm}$

1924 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.101$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0496 P)^{2}+0.0335 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})
x
y
z
$U_{\text {iso }} * / U_{\text {eq }}$

S1	$0.24777(9)$	$0.73176(9)$	$0.11879(5)$	$0.04736(19)$
S2	$0.39011(7)$	$0.69015(8)$	$0.38202(5)$	$0.03952(18)$
S3	$0.28393(7)$	$0.64232(7)$	$0.55098(5)$	$0.03611(17)$
S4	$0.22813(8)$	$0.85040(8)$	$0.80525(5)$	$0.04221(18)$
S5	$-0.14480(9)$	$0.82971(9)$	$0.62019(6)$	$0.04559(19)$
N1	$0.0187(3)$	$0.6694(2)$	$0.30088(18)$	$0.0370(4)$
H1	0.0090	0.6510	0.3803	0.044^{*}
N2	$-0.1092(3)$	$0.7742(3)$	$0.86906(19)$	$0.0440(5)$
H2	-0.0358	0.7639	0.9384	0.053^{*}
C1	$-0.1562(3)$	$0.6703(4)$	$0.2139(3)$	$0.0485(6)$
H1A	-0.1370	0.7799	0.1837	0.073^{*}
H1B	-0.2619	0.6604	0.2634	0.073^{*}
H1C	-0.1851	0.5713	0.1369	0.073^{*}
C2	$0.1897(3)$	$0.6948(3)$	$0.26569(19)$	$0.0333(4)$
C3	$0.3067(3)$	$0.8671(3)$	$0.6478(2)$	$0.0390(5)$
H3A	0.4402	0.9359	0.6636	0.047^{*}
H3B	0.2275	0.9267	0.5983	0.047^{*}
C4	$-0.0280(3)$	$0.8118(3)$	$0.7646(2)$	$0.0346(4)$
C5	$-0.3151(3)$	$0.7494(4)$	$0.8732(3)$	$0.0488(6)$
H5A	-0.3432	0.8638	0.8978	0.073^{*}
H5B	-0.3498	0.6812	0.9388	0.073^{*}
H5C	-0.3881	0.6867	0.7856	0.073^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0507(4)$	$0.0674(4)$	$0.0306(3)$	$0.0158(3)$	$0.0153(2)$	$0.0206(3)$
S2	$0.0326(3)$	$0.0578(4)$	$0.0331(3)$	$0.0132(2)$	$0.0107(2)$	$0.0168(3)$
S3	$0.0393(3)$	$0.0427(3)$	$0.0300(3)$	$0.0103(2)$	$0.0079(2)$	$0.0157(2)$
S4	$0.0366(3)$	$0.0623(4)$	$0.0270(3)$	$0.0115(3)$	$0.0030(2)$	$0.0107(3)$
S5	$0.0446(3)$	$0.0627(4)$	$0.0328(3)$	$0.0181(3)$	$0.0012(2)$	$0.0168(3)$
N1	$0.0357(9)$	$0.0483(10)$	$0.0304(8)$	$0.0113(8)$	$0.0081(7)$	$0.0145(8)$
N2	$0.0385(10)$	$0.0645(12)$	$0.0333(9)$	$0.0154(9)$	$0.0056(8)$	$0.0187(9)$
C1	$0.0379(13)$	$0.0657(15)$	$0.0452(12)$	$0.0161(11)$	$0.0032(10)$	$0.0193(12)$
C2	$0.0388(11)$	$0.0358(9)$	$0.0276(9)$	$0.0105(8)$	$0.0077(8)$	$0.0104(8)$
C3	$0.0413(11)$	$0.0417(11)$	$0.0331(10)$	$0.0045(9)$	$0.0093(9)$	$0.0116(9)$
C4	$0.0385(11)$	$0.0382(10)$	$0.0290(9)$	$0.0136(8)$	$0.0061(8)$	$0.0073(8)$
C5	$0.0395(13)$	$0.0686(16)$	$0.0417(12)$	$0.0180(12)$	$0.0101(10)$	$0.0137(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 2$	$1.6671(18)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.767(2)$
$\mathrm{S} 2-\mathrm{S} 3$	$2.0364(8)$
$\mathrm{S} 3-\mathrm{C} 3$	$1.816(2)$
$\mathrm{S} 4-\mathrm{C} 4$	$1.782(2)$
$\mathrm{S} 4-\mathrm{C} 3$	$1.787(2)$
$\mathrm{S} 5-\mathrm{C} 4$	$1.655(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.306(3)$

$\mathrm{N} 2-\mathrm{C} 5$	$1.456(3)$
$\mathrm{N} 2-\mathrm{H} 2$	0.8600
$\mathrm{C} 1-\mathrm{H} 1 A$	0.9600
$\mathrm{C} 1-\mathrm{H} 1 B$	0.9600
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600
C3-H3A	0.9700
C3-H3B	0.9700
C5-H5A	0.9600

N1-C1	1.453 (3)
N1-H1	0.8600
N2-C4	1.328 (3)
C2-S2-S3	105.99 (7)
C3-S3-S2	101.85 (7)
$\mathrm{C} 4-\mathrm{S} 4-\mathrm{C} 3$	103.25 (10)
C2-N1-C1	123.90 (17)
C2-N1-H1	118.0
C1-N1-H1	118.0
C4-N2-C5	123.93 (18)
C4-N2-H2	118.0
C5-N2-H2	118.0
N1-C1-H1A	109.5
N1-C1-H1B	109.5
H1A-C1-H1B	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N1-C2-S1	127.70 (16)
N1-C2-S2	119.06 (14)
$\mathrm{C} 2-\mathrm{S} 2-\mathrm{S} 3-\mathrm{C} 3$	-90.13 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	-0.4 (3)
C1-N1-C2-S2	179.97 (18)
S3-S2-C2-N1	-0.01 (19)
S3-S2-C2-S1	-179.71 (9)
C4-S4-C3-S3	-83.86 (14)

C5-H5B	0.9600
C5-H5C	0.9600
S1-C2-S2	113.24 (12)
S4-C3-S3	107.88 (10)
S4-C3-H3A	110.1
S3-C3-H3A	110.1
S4-C3-H3B	110.1
S3-C3-H3B	110.1
H3A-C3-H3B	108.4
N2-C4-S5	125.43 (17)
N2-C4-S4	109.93 (14)
S5-C4-S4	124.59 (12)
N2-C5-H5A	109.5
N2-C5-H5B	109.5
H5A-C5-H5B	109.5
N2-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
S2-S3-C3-S4	-177.57 (9)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{S} 5$	-2.4 (3)
C5-N2-C4-S4	175.1 (2)
$\mathrm{C} 3-\mathrm{S} 4-\mathrm{C} 4-\mathrm{N} 2$	172.23 (16)
$\mathrm{C} 3-\mathrm{S} 4-\mathrm{C} 4-\mathrm{S} 5$	-10.31 (17)

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~S} 3$	0.86	2.50	$3.073(2)$	125
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~S} 3^{\mathrm{i}}$	0.86	3.02	$3.595(2)$	127
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.67	$3.515(2)$	168

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x, y, z+1$.

supplementary materials

Fig. 1

